首页 全所PI名录
  • 吴薇
  • 研究员,研究组长,博士生导师
  • E-mail: wuw@sibcb.ac.cn
  • 实验室主页: http://wulab.sibcb.ac.cn/
    个人简介:
  •  2012年毕业于华中科技大学,获生物信息技术学士学位;2017年毕业于中科院生物物理研究所,获生物信息学博士学位;2018至2022年于美国国家癌症研究中心从事博士后研究;于2022年7月起任中科院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究员,研究组长,博士生导师
    社会任职:
  •  
    研究方向:
  • 生物信息学、DNA损伤与修复
    研究工作:
  •   基因组DNA生物遗传信息的重要载体,维持其稳定性和准确性是一切生命活动的基础。除UV射线等外源性刺激之外,细胞在正常生命代谢活动中会发生内源的程序性DNA损伤,包括起始减数分裂同源重组所需的DNA双链断裂;TET家族蛋白介导的主动去甲基化过程所需的DNA单链断裂;适应性免疫中起始基因重排、高频突变、DNA重组等过程以产生抗体多样性的DNA损伤等。程序性损伤通常受到细胞精密地调控以保证遗传信息的完整。然而,如果这些损伤在修复过程中发生错误,例如DNA双链断裂的一端错误地连接到不同染色体断裂的另一端时会导致易位,则可能促进癌症等疾病的发生和影响疾病治疗效果。

      与此同时,细胞内也存在着大量内源的非程序性损伤,例如DNA复制过程中产生的碱基错配,核苷酸的氧化、烷化、脱氨基化这些异常修饰等。基因组上大量遍布的短串联重复序列(Short Tandem Repeat, STR)也是一个非常重要的非程序损伤来源。STR由1-6个核苷酸通过重复排列组成。根据重复序列的不同,STR可以在RNA转录和DNA复制等过程中形成G四联体(G-quadruplex)、三链DNA(Triplex DNA)、十字架(cruciform)等二级结构,而这些结构极易引起基因组不稳定。

      我们将利用已开发的用于检测DNA断裂和修复过程的高通量测序技术,结合生物信息学分析方法及分子生物学等多学科技术手段研究不同类型内源性损伤在肿瘤中的影响,包括(但不限于)以下几个方向:1)神经细胞内的程序性DNA损伤与化疗引起的神经损伤之间的关联。2)短重复序列引起的基因组不稳定对肿瘤发生、进展的影响。

    承担科研项目情况:
    代表论著:
    1. Wang, D.*, Wu, W.*, Callen, E.*, ..., Nussenzweig, A. (2022). Active DNA demethylation promotes cell fate specification and the DNA damage response. Science (New York, N.Y.)378(6623), 983–989.
      • Perspectives by Isaac F. López-moyado and Anjana Rao, Science. 2022 Dec 2;378(6623):948-949
    2. Matos-Rodrigues, G.*, van Wietmarschen, N.*, Wu, W., …, Nussenzweig, A. (2022). S1-END-seq reveals DNA secondary structures in human cells. Molecular cell, 82(19), 3538–3552.e5.
    3. Fowler, F., Chen, B. R., Zolnerowich, N., Wu, W., ..., Tyler J.K. (2022). DNA-PK promotes DNA end resection at DNA double strand breaks in G0 cells. Elife, 11, e74700.
    4. Paiano, J.*, Zolnerowich, N.*, Wu, W., Pavani, R., …, Nussenzweig, A. (2021) Role of 53BP1 in End Protection and DNA synthesis at DNA breaks. Genes & Development. 35:1-12
    5. Chen, B. R., Wang, Y., Tubbs, A., Zong, D., Fowler, F., Zolnerowich, N., Wu, W., ..., Sleckman, B. P. (2021) Lin37-DREAM Prevents DNA End Resection and Homologous Recombination at DNA Double Strand Breaks in Quiescent Cells. Elife, 10, e68466.
    6. Olbrich, T., Vega-Sendino, M., Tillo, D., Wu, W., ..., Macias, S. R. (2021). CTCF is a Barrier for Totipotent-like Reprogramming. Nature Communications, 12(1), 4856.
    7. Wu, W.*,Hill, S. E.*, Nathan, W.*, ..., Nussenzweig, A. (2021). Neuronal enhancers are hotspots for DNA single-strand break repair. Nature,593(7859), 440-444.
      • Spotlighted by Vishnu Dileep and Li-Huei Tsai, Neuron, 2021,109(11), 1766-1768
      • Research Highlight by Nature Reviews Molecular Cell Biology, 2021,22(5), 304-305.
    8. Shinoda, K., Zong, D., Callen, E., Wu, W.,Dumitrache, L. C., Belinky, F., ..., Nussenzweig, A. (2021). The dystonia gene THAP1 controls DNA double-strand break repair choice.Molecular Cell81(12), 2611-2624.
    9. van Wietmarschen, N.*, Sridharan, S.*, Nathan, W.J.*, Tubbs, A.*, Chan, E.M.*, Callen, E.#Wu, W.#(#equal contribution),…, Nussenzweig, A. (2020). Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature, 586(7828), 292-298.
    10. Nacson, J., Di Marcantonio, D., Wang, Y., Bernhardy, A.J., Clausen, E., Hua, X., Cai, K.Q., Martinez, E., Feng, W., Callén, E., Wu, W., …, Johnson, N. (2020). BRCA1 Mutational Complementation Induces Synthetic Viability. Molecular Cell, 78(5), 951-959.
    11. Mahgoub, M.*, Paiano, J.*, Bruno, M., Wu, W., …, Macfarlan, T.S. (2020). Dual histone methyl reader ZCWPW1 facilitates repair of meiotic double strand breaks in male mice. Elife, 9, e53360.
    12. Sciascia, N., Wu, W.#Zong, D.#(#equal contribution),…, Nussenzweig, A. (2020). Suppressing Proteasome Mediated Processing of Topoisomerase II DNA-Protein Complexes Preserves Genome Integrity. Elife, 9, e53447.
    13. Paiano, J.*Wu, W.*, …, Nussenzweig, A. (2020). ATM and PRDM9 Regulate SPO11-bound Recombination Intermediates During Meiosis. Nature Communications,11(1), 1-15.
    14. Callen, E.*, Zong, D.*, Wu, W., …, Nussenzweig, A. (2019). 53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. Molecule Cell, 77(1), 26-38.
    15. Wang, Y.*, Zhu, P.*, Luo, J.*, Wang, J.*, Liu, Z.*, Wu, W., …, Fan, Z. (2019). LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling. The EMBO journal, 38(17), e101110.
    16. Tubbs, A.*, Sridharan, S.*, van Wietmarschen, N., Maman, Y., Callen, E., Stanlie, A., Wu, W., …, Nussenzweig, A. (2018). Dual roles of Poly (dA: dT) tracts in replication initiation and fork collapse. Cell, 174(5), 1127-1142.
    17. Ye, B. *, Liu, B. *, Yang, L. *, Zhu, X. *, Zhang, D.*, Wu, W., …, Fan, Z. (2018). LncKdm2b controls self-renewal of embryonic stem cells via activating expression of transcription factor Zbtb3. The EMBO journal, 37(8), e97174.
    18. Cui, Y.*, Chen, X.*, Niu, Y. *, Wang, D., Luo, H., Fan. Z., Wang, D., Wu, W., ... Chen, R. (2017). Dynamic-BM: Multi-species dynamic BodyMap database from temporal RNA-seq data. Briefings in Bioinformatics, 19(6), 1302-1309.
    19. Zhang, Z.*, Jones, A E.*, Wu, W.*, Kim, J., Kang, Y., Bi, X., ..., Wang, H. (2017). Role of remodeling and spacing factor 1 in histone H2A ubiquitination-mediated gene silencing. Proc Natl Acad Sci U S A, 114(38), E7949-E7958.
    20. Sun, Y.*, Wei, G.*, Luo, H.*, Wu, W.*, Skogerb?, G., Luo, J. & Chen, R. (2017). The Long Noncoding RNA SNHG1 Regulates Both Local and Distal Genes in Cancer. Oncogene, 36(49), 6774-6783.
    21. Yan, X.*, Zhang, D.*, Wu, W., …, Fan, Z. (2017). Mesenchymal stem cells promote hepatocarcinogenesis via lncRNA-MUF interaction with ANXA2 and miR-34a. Cancer research, 77(23), 6704-6716.
    22. Chen, J., Liu, L., Wei, G.,Wu, W., Luo, H., Yuan, J., ... Chen, R. (2016). The long noncoding RNA ASNR regulates degradation of Bcl-2 mRNA through its interaction with AUF1. Scientific reports, 6(1), 1-11.
    23. Hao, Y.*,Wu, W.*, Li, H., Yuan, J., Luo, J., Zhao, Y. & Chen, R. (2016). NPInter v3.0: an upgraded database of noncoding RNA-associated interactions.Database, 2016.
    24. Yuan, J.*, Yue, H.*, Zhang, M., Luo, J., Liu, L., Wu, W., ..., Chen, R. (2016). Transcriptional profiling analysis and functional prediction of long noncoding RNAs in cancer. Oncotarget, 7(7), 8131.
    25. Zhao, Y.*, Li, H.*, Fang, S., Kang, Y., Wu, W., Hao, Y., ..., Chen, R. (2016). NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res, 44(D1), D203-D208.
    26. Yuan, J.*, Wu, W.*, Xie, C., Zhao, G., Zhao, Y. & Chen, R. (2014).NPInter v2.0: an updated database of ncRNA interactions. Nucleic Acids Res, 42(D1), D104-D108.
    27. Xie, C.*, Yuan, J.*, Li, H., Li, M., Zhao, G., Bu, D., Zhu, W., Wu, W., ..., Chen, R. & Zhao, Y. (2014). NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res, 42(D1), D98-D103.
    获奖及荣誉:
    研究组成员: